29) Room Temperature Crystal Field of Curium Resolved by Circularly Polarized Luminescence
J. J. Woods, A. Peterson, J. A. Adewuyi, R. Lai, J. N. Wacker, R. J. Abergel*, G. Ung*, Chem. Sci. 2025, Advance Article.
DOI:10.1039/D4SC07594C
28) Consolidated Curium Reprocessing Procedure Inspires Molecular Design for Sensitized Curium Circularly Polarized Luminescence
A. Peterson, J. A. Adewuyi, J. J. Woods, J. N. Wacker, W. W. Lukens, R. J. Abergel*, G. Ung*, Inorg. Chem. 2024, 63, 19752-19785.
DOI:10.1002/acs.inorgchem.4c02976
27) Improved Energy Transfer in the Sensitization of Americium Enables Observation of Circularly Polarized Luminescence
J. J. Woods, J. N. Wacker, A. Peterson, R. J. Abergel*, G. Ung*, Angew. Chem. Int. Ed. 2024, 63, e202412535.
DOI:10.1002/anie.202412535
26) Electronic Structure of Metallophlorins: Lessons from Iridium and Gold Phlorin Derivatives
S. Larsen, J. A. Adewuyi, K. E. Thomas, J. Conradie, Y. Rousselin, G. Ung*, Abhik Ghosh*, Inorg. Chem. 2024, 63, 9842-9853.
DOI:10.1021/acs.inorgchem.4c00483
25) Augmentation of NIR Circularly Polarized Luminescence Activity in Shibasaki-type Lanthanide Complexes Supported by the Spirane Sphenol
D. Schnable, G. Ung*, Inorg. Chem. 2024, 63, 7378-7385.
DOI:10.1021/acs.inorgchem.4c00417
24) High Quantum Yields from Perfluorinated Binolate Erbium Complexes and Their Circularly Polarized Luminescence
J. A. Adewuyi, G. Ung*, J. Am. Chem. Soc. 2024, 146, 7097-7104.
DOI:10.1021/jacs.4c01165
23) Magnetic Assembly of Eu-doped NaYF4 Nanorods for Field-Responsive Linearly and Circularly Polarized Luminescence
Z. Wang, D. Schnable, Q. Fan, Z. Li, G. Ung*, Y. Yin*, ACS Nano 2024, 18, 5122-5131.
DOI:10.1021/acsnano.3c12344
22) Bis-Oxazoline Derivatives as Ancillary Ligands for bis-Cyclometalated Iridium Complexes
S. C. Kapper, A. Ponnekanti, J. Schaab, T.-Y. Li, C. L. Chung, G. Ung, P. I. Djurovich, M. E. Thompson*, J. Organomet. Chem. 2024, 1004, 122947.
DOI:10.1016/j.organchem.2023.122947
21) Enhanced Circularly Polarized Luminescence Dissymmetry of [Ru(bpy)3]2+ Complexes in a 3D Chiral Framework: A Study of Transparent Thin Films
S. Zhang, D. Schnable, J. Elgin, G. Ung*, Y. Wu*, Chem. Commun. 2023, 59, 12867-12870.
DOI:10.1039/D3CC04083F
20) Why Surface Hydrophobicity Promotes CO2 electroreduction: a Case Study of Hydrophobic Polymer N-Heterocyclic Carbenes
Q. Luo, H. Duan, M. C. McLaughlin, K. Wei, J. Tapia, J. A. Adewuyi, S. Shuster, M. Liaqat, S. L. Suib, G. Ung, P. Bai*, S. Sun*, J. He*, Chem. Sci. 2023, 14, 9664-9677.
DOI:10.1039/D3SC02658B
19) Transition Metal Isocorroles as Singlet Oxygen Sensitizers
S. Larsen, J. A. Adewuyi, G. Ung*, A. Ghosh*, Inorg. Chem. 2023, 62, 7483-7490.
DOI:10.1021/acs.inorgchem.3c00782
18) Vanol-Supported Lanthanide Complexes for Strong Circularly Polarized Luminescence at 1550 nm
J. A. Adewuyi, N. D. Schley, G. Ung*, Chem. Eur. J. 2023, 29, e202300800.
DOI:10.1002/chem.202300800
17) Anionic Ligand-Induced Chirality in Perovskite Nanoplatelets
T. K. T. Tran, J. A. Adewuyi, Y. Wang, M. D. Morales-Acosta, T. Mani, G. Ung, J. Zhao*, Chem. Commun. 2023, 59, 1485-1488.
DOI:10.1039/D2CC05469H
16) SPINOLate Lanthanide Complexes for High Circularly Polarized Luminescence Metrics in the Visible and Near-Infrared
B. N. Willis,‡ D. Schnable,‡ N. D. Schley, G. Ung*, J. Am. Chem. Soc. 2022, 144, 22421-22425. (‡ equal contribution)
DOI:10.1021/jacs.2c10364
15) Circularly Polarized Luminescence from Uranyl Improves Resolution of Electronic Transitions
D. Schnable, N. D. Schley, G. Ung*, J. Am. Chem. Soc. 2022, 144, 10718-10722.
DOI:10.1021/jacs.2c03791
14) Strong Circularly Polarized Luminescence at 1550 nm from Enantiopure Molecular Erbium Complexes
N. F. M. Mukthar, N. D. Schley, G. Ung*, J. Am. Chem. Soc. 2022, 144, 6148-6153.
DOI:10.1021/jacs.2c01134
13) Synthesis of Bright Water-Soluble Circularly Polarized Luminescence Emitters as Potential Sensors
J. A. Adewuyi, N. D. Schley, G. Ung*, Inorg. Chem. Front. 2022, 9, 1474-1480.
DOI:10.1039/d1qi01398j
12) Substituent Effect on the Circularly Polarized Luminescence of C1-Symmetrical Carbene-Copper(I) Complexes
E. E. Braker,‡ N. F. M. Mukthar,‡ N. D. Schley, G. Ung*, ChemPhotoChem 2021, 5, 902-905. (‡ equal contribution; Invited contribution: “Special Collection: Circularly Polarised Luminescence”).
DOI:10.1002/cptc.202100068
11) High Circularly Polarized Luminescence Brightness from Analogues of Shibasaki’s Lanthanide Complexes
M. Deng, N. D. Schley, G. Ung*, Chem. Commun. 2020, 56, 14813-14816.
DOI:10.1039/D0cc06568D
10) Synthesis of Enantiopure Lanthanide Complexes Supported by Hexadentate N,N’-bis(methylbipyridyl)bipyrrolidine and their Circularly Polarized Luminescence
D. Schnable, K. Freedman, K. M. Ayers, N. D. Schley, M. Kol, G. Ung*, Inorg. Chem. 2020, 59, 8498-8504.
DOI:10.1021/acs.inorgchem.0c00946
9) Do Polymer Ligands Block the Catalysis of Metal Nanoparticles? Unexpected Importance of the Binding Motifs Improving Catalytic Activity
L. Zhang, Z. Wei, M. Meng, G. Ung, J. He*, J. Mater. Chem. A 2020, 8, 15900-15908.
DOI:10.1039/d0ta03906c
8) Circularly Polarized Luminescence from Enantiopure C2-Symmetrical Tetrakis(2-pyridylmethyl)-1,2-diaminocyclohexane Lanthanide Complexes
K. M. Ayers, N. D. Schley, G. Ung*, Inorg. Chem. 2020, 59, 7657-7665.
DOI:10.1021/acs.inorgchem.0c00628
7) Alkali-Metal- and Halide-Free Dinuclear Mixed-Valent Samarium and Europium Complexes
N. F. M. Mukthar, N. D. Schley, G. Ung*, Dalton Trans. 2020, 49, 16059-16061. (Invited contribution: “New Talent: Americas”; Selected in Spring 2020’s HOT Articles Themed collection)
DOI:10.1039/D0DT01095B
6) N-Heterocyclic Carbene-Ended Polymers as Surface Ligands of Plasmonic Metal Nanoparticles
S. Thanneeru,‡ K. M. Ayers,‡ M. Anuganti, L. Zhang, C. V. Kumar, G. Ung*, J. He*, J. Mater. Chem. C 2020, 8, 2280-2288. (‡ equal contribution)
DOI:10.1039/c9tc04776j
5) Yellow Circularly Polarized Luminescence from C1-Symmetrical Copper(I) Complexes
M. Deng,‡ N. F. M. Mukthar,‡ N. D. Schley, G. Ung*, Angew. Chem. Int. Ed. 2020, 59, 1228-1231. (‡ equal contribution)
DOI:10.1002/anie.201913672
4) A Polymer Solution to Prevent Nanoclustering and Improve the Selectivity of Metal Nanoparticles for Electrocatalytic CO2 Reduction
L. Zhang, Z. Wei, S. Thanneeru, M. Meng, M. Kruzyk, G. Ung, B. Liu*, J. He* Angew. Chem. Int. Ed. 2019, 58, 15834-15840. Highlighted as “Frontispiece”.
DOI:10.1002/anie.201909069
3) Solid State Structures, Solution Behavior, and Luminescence of Simple Tetrakis(2-pyridylmethyl)ethylenediamine Lanthanide Complexes
K. M. Ayers, N. D. Schley, G. Ung*, Eur. J. Inorg. Chem. 2019, 3769-3775.
DOI:10.1002/ejic.201900609
2) Monometallic Lanthanide Salicylhydrazone Complexes Exhibiting Strong Near-Infrared Luminescence
K. M. Ayers, N. D. Schley, G. Ung*, Chem. Commun. 2019, 55, 8446-8449.
DOI:10.1039/c9cc03934a
1) Solvent Dependent Sensitization of Ytterbium and Neodymium via an Intramolecular Excimer
M. Deng, N. D. Schley, G. Ung*, Inorg. Chem. 2018, 57, 15399-15405.
DOI:10.1021/acs.inorgchem.8b02709
Prior to UConn:
15) Catalytic hydrazine disproportionation mediated by a thiolate-bridged VFe complex
N. X. Gu, G. Ung, J. C. Peters*, Chem. Commun. 2019, 55, 5363-5366.
DOI:10.1039/c9cc00345b
14) Evaluating Molecular Co Complexes for the Conversion of N2 to NH3
T. J. Del Castillo, N. B. Thompson, D. L. M. Suess, G. Ung, J. C. Peters*, Inorg. Chem. 2015, 54, 9256-9262
DOI:10.1021/acs.inorgchem.5b00645
13) Low Temperature N2 Binding to 2-Coordinate L2Fe0 Enables Reductive Trapping of L2FeN2− and NH3 Generation
G. Ung, J. C. Peters*, Angew. Chem. Int. Ed. 2015, 54, 532-535
DOI:10.1002/anie.201409454
12) Two-Coordinate Fe0 and Co0 Complexes Supported by Cyclic (Alkyl)(Amino)Carbenes
G. Ung, J. Rittle, M. Soleilhavoup, G. Bertrand, J. C. Peters*, Angew. Chem. Int. Ed. 2014, 53, 8427
DOI:10.1002/anie.201404078
11) Isolation of a Potassium bis(1,2,3-Triazol-5-ylidene)carbazolide: A Stabilizing Pincer Ligand for Reactive Late Transition Metal Complexes
D. I. Bezuidenhout*, G. Kleinhans, G. Guisado-Barrios, D. C. Liles, G. Ung, G. Bertrand*, Chem. Commun. 2014, 50, 2431-2433
DOI:10.1039/c3cc49385g
10) β- and α-Hydride Abstraction in Gold(I) Alkyl Complexes
G. Ung, G. Bertrand*, Angew. Chem. Int. Ed. 2013, 52, 11388-11391
DOI:10.1002/anie.201306550
9) Deprotonation of a Borohydride: Synthesis of a Carbene-Stabilized Boryl Anion
D. A. Ruiz, G. Ung, M. Melaimi, G. Bertrand*, Angew. Chem. Int. Ed. 2013, 52, 7590-7592
DOI:10.1002/anie.201303457
8) Au(III)- versus Au(I)-induced Cyclization: Synthesis of 6-Membered Mesoionic Carbene and Acyclic (Aryl)(Heteroaryl) Carbene Complexes
G. Ung, M. Soleilhavoup, G. Bertrand*, Angew. Chem. Int. Ed. 2013, 52, 758-761
DOI:10.1002/anie.201207961
7) C-F Bond Activation with an Apparently Benign Ethynyl Dithiocarbamate and Subsequent Fluoride Transfer Reactions
G. Ung, G. Bertrand*, Chem. Eur. J. 2012, 18, 12955-12957
DOI:10.1002/chem.201202292
6) Ynamides: Stable Ligands Equivalents of Unstable Oxazol-4-ylidenes (Novel Mesoionic Carbenes)
G. Ung, D. Mendoza-Espinosa, G. Bertrand*, Chem. Commun. 2012, 48, 7088-7090
DOI:10.1039/c2cc33319h
5) Bond Activation with an Apparently Benign Ethynyl Dithiocarbamate
G. Ung, G. D. Frey, W. W. Schoeller, G. Bertrand*, Angew. Chem. Int. Ed. 2011 50, 9923-9925
DOI:10.1002/anie.201104303
4) Mesoionic Thiazol-5-ylidenes as Ligands for Transition Metal Complexes
D. Mendoza-Espinosa, G. Ung, B. Donnadieu, G. Bertrand*, Chem. Commun. 2011, 47, 10614-10616
DOI:10.1039/c1cc14165a
3) Stability and Electronic Properties of Imidazole-based Mesoionic Carbenes
G. Ung, G. Bertrand*, Chem. Eur. J. 2011, 17, 8269-8272
DOI:10.1002/chem.201101130
2) A Stable Acyclic Ligand Equivalent of an Unstable 1,3-Dithiol-5-ylidene
G. Ung, D. Mendoza-Espinosa, J. Bouffard, G. Bertrand*, Angew. Chem. Int. Ed. 2011, 50, 4215-4218
DOI:10.1002/anie.201100420
1) Tandem Catalysis: Alcohol Oxidation and C-C Bond Formation via C-H Bond Activation
M.-O. Simon, G. Ung, S. Darses*, Adv. Synth. Catal. 2011, 353, 1045-1048
DOI:10.1002/adsc.201000884